Resonant Hamiltonian Systems Associated to the One-dimensional Nonlinear Schrödinger Equation with Harmonic Trapping
نویسنده
چکیده
We study two resonant Hamiltonian systems on the phase space L2(R → C): the quintic one-dimensional continuous resonant equation, and a cubic resonant system that appears as the modified scattering limit of a specific NLS equation. We prove that these systems approximate the dynamics of the quintic and cubic one-dimensional NLS with harmonic trapping in the small data regime on long times scales. We then pursue a thorough study of the dynamics of the resonant systems themselves. Our central finding is that these resonant equations fit into a larger class of Hamiltonian systems that have many striking dynamical features: non-trivial symmetries such as invariance under the Fourier transform and the flow of the linear Schrödinger equation, a robust wellposedness theory, including global wellposedness in L2, and an infinite family of orthogonal, explicit stationary wave solutions in the form of the Hermite functions.
منابع مشابه
KAM Theorem for the Nonlinear Schrödinger Equation
We prove the persistence of finite dimensional invariant tori associated with the defocusing nonlinear Schrödinger equation under small Hamiltonian perturbations. The invariant tori are not necessarily small.
متن کاملZero Energy Scattering for One-dimensional Schrödinger Operators and Applications to Dispersive Estimates
We show that for a one-dimensional Schrödinger operator with a potential, whose (j + 1)-th moment is integrable, the j-th derivative of the scattering matrix is in the Wiener algebra of functions with integrable Fourier transforms. We use this result to improve the known dispersive estimates with integrable time decay for the one-dimensional Schrödinger equation in the resonant case.
متن کاملConservation of resonant periodic solutions for the one-dimensional nonlinear Schrödinger equation
We consider the one-dimensional nonlinear Schrödinger equation with Dirichlet boundary conditions in the fully resonant case (absence of the mass term). We investigate conservation of small amplitude periodic solutions for a large measure set of frequencies. In particular we show that there are infinitely many periodic solutions which continue the linear ones involving an arbitrary number of re...
متن کاملNonlinear Schrödinger, Infinite Dimensional Tori and Neighboring Tori
of the periodic nonlinear Schrödinger equation, where u(x, t) is a complex valued function in the class of smooth period one functions. In this work, we explain in what sense the generic level set of the constants of motion for the periodic nonlinear Schrödinger equation is an infinite dimensional torus, why the solution of the Hamiltonian equation is almost periodic in time, and describe how n...
متن کاملLong time dynamics for the one dimensional non linear Schrödinger equation
— In this article, we first present the construction of Gibbs measures associated to nonlinear Schrödinger equations with harmonic potential. Then we show that the corresponding Cauchy problem is globally well-posed for rough initial conditions in a statistical set (the support of the measures). Finally, we prove that the Gibbs measures are indeed invariant by the flow of the equation. As a byp...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2017